

Modelling Known Land Routes: A Philosophical and Methodological Rethinking

Joseph Lewis

@josephlewis1992

The Status Quo: Generalisable Models

Moving from Essentialism to Materialism...

ESSENTIALISM

• Types defined according to a set of essential characteristics;

• Exist naturally in the world;

Uncovered from empirical observations

Moving from Essentialism to Materialism...

MATERIALISM

• Types defined as theoretical units always becoming something else;

Constructed from analytically-useful units that measure things;

• Share attributes and values deemed analytically important

Philosophical Rethinking

PHILOSOPHICAL

- (1) When are all things equal? The *Ceteris Paribus* clause;
- (2) The problem of inconsistent models;
- (3) The need for better hypotheses

METHODOLOGICAL

- (5) Choosing the cost function;
- (6) The need for a formal framework

When are all things equal? The Ceteris Paribus clause

"Other things being equal;

other things being absent;

other things being just right"

HOWEVER a problem arises:

"all other things are rarely equal"

Some reasons for the principle of least effort* not holding:

- Landcover type;
- Altitude;
- Visibility;
- Rivers;
- Loads;
- Social and Cultural factors

* for simplicity assumed models minimise time/energy only

The Problem of Inconsistent Models

SUBSTANTIAL ASSUMPTIONS

• Causal structure of the model (e.g. time taken or energy expended by slope)

AUXILIARY ASSUMPTIONS

- Components and number of parameters in a model;
- Simplification of the data (e.g. curve fitting)

Models with different auxiliary assumptions are compatible with one another given they share substantial assumptions

Models with the same substantial assumptions are compatible with one another

The Problem of Inconsistent Models

ASSUMPTIONS

- Same causal structure (time by slope)
- Different components/parameters

Different auxiliary assumptions but share substantial assumptions

COMPATIBLE

The Need for Better Hypotheses (Models)

NORMATIVE FUNCTION:

 Representation of how idealised, optimal, and rational people *ought* to act(ed)

DESCRIPTIVE FUNCTION:

• Representation of how people actually act(ed)

Complete Spatial Randomness in Point Pattern Analysis

Methodological rethinking

PHILOSOPHICAL

- (1) When are all things equal? The Ceteris Paribus clause;
- (2) The problem of inconsistent models;
- (3) The need for better hypotheses

METHODOLOGICAL

- (5) Choosing the cost function;
- (6) The need for a formal framework;
- (7) Generative models

Choosing the Cost Function

- Substantial assumption chosen (time by slope)
- Auxiliary assumptions are flexible

Tobler's Hiking Function (Double Exponential)

The Need for a Formal Framework

A Simulated Example

b parameter value

c parameter value

Proposed Approach: Generative Models

 How the route might have been generated (the story behind the data)

 Inverse of multicriteria decision analysis when planning modern-day trails, power lines, and roads

Multicriteria Decision Analysis Framework

THREE FUNDAMENTAL CONCEPTS:

- How factors are scaled
- How factors are combined
- How factors are weighted*

- All factors scaled to between 0 and 1
- Factors combined through summation
- Factors weighted based on preference

* (1) factors weights between 0 and 1, with sum of all factors equal to 1; (2) greater the weight, more important the factor; (3) factor weights are ratio-scaled

Modelling Roman Roads: A Generative Model

Modelling Roman Roads: Canterbury to Lympne

Modelling Roman Roads: Overall Results

Modelling Roman Roads: 'Best' Simulated Routes

Modelling Roman Roads: Next Steps

- Re-assess generative model
- Examine how multiple factors and their parameter values are related
- Investigate parameter values' spatial (and temporal) patterns
- Assess whether generative model and parameter values are transferable to Roman roads in other provinces

Thank you Any questions?

Joseph Lewis

@josephlewis1992

